10 research outputs found

    Small-scale variation in available water capacity of the soil influences height growth of single trees in Southern Germany

    No full text
    Aim of study: Detecting possible small-scale soil effects on height growth of single trees in monospecific stands of three important tree species (Abies alba, Fagus sylvatica, and Picea abies). Area of study: 37 mature stands along an ecological gradient in Southern Germany from the cold and wet “optimal niche zone” to warmer and drier niche zones, including gravelly soils with poor water supply. Material and methods: Measurement of achieved height and age of 15 to 20 sample trees per stand. Estimation of the available water capacity of the soil (AWC) in close proximity to sample trees based on soil texture following the German soil survey guidelines. Examining height growth depending on niche zone and AWC.   Main results: On sites (stand level) with the lowest water regime, height growth increased significantly with AWC of microsites. The estimated effect on height growth over the whole range of AWC values was almost 8 m at those sites. In contrast, the effect was negative on optimal sites. For intermediate and marginal sites, the effect was positive, albeit not significant for marginal sites. Research highlights: To our knowledge this is the first study about small-scale effects of AWC on height growth of single trees in temperate European forests. Small-scale soil variability should be considered in future scientific studies and practical evaluation, involving single tree performance at stands with low water regime. This seems particularly important in genetic environmental associations studies and in the process of selecting trees for breeding purposes in such stands

    Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution

    No full text
    Based on macroecological data, we test the hypothesis whether European tree species of temperate and boreal distribution maintain their water and nutrient supply in the more arid southern margin of their distribution range by shifting to more fertile soils with higher water storage than in their humid core distribution range (cf. soil compensatory effects). To answer this question, we gathered a large dataset with more than 200,000 plots that we related to summer aridity (SA), derived from WorldClim data, as well as soil available water capacity (AWC) and soil nutrient status, derived from the European soil database. The soil compensatory effects on tree species distribution were tested through generalized additive models. The hypothesis of soil compensatory effects on tree species distribution under limiting aridity was supported in terms of statistical significance and plausibility. Compared to a bioclimatic baseline model, inclusion of soil variables systematically improved the models’ goodness of fit. However, the relevance measured as the gain in predictive performance was small, with largest improvements for P. sylvestris, Q. petraea and A. alba. All studied species, except P. sylvestris, preferred high AWC under high SA. For F. sylvatica, P. abies and Q. petraea, the compensatory effect of soil AWC under high SA was even more pronounced on acidic soils. Soil compensatory effects might have decisive implications for tree species redistribution and forest management strategies under anthropogenic climate change. Therefore, soil compensatory effects deserve more intensive investigation, ideally, in studies combining different spatial scales to reduce the uncertainty associated with the precision of soil information

    Geographical adaptation prevails over species-specific determinism in trees' vulnerability to climate change at Mediterranean rear-edge forests

    No full text
    Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange.Yet, the spatiotemporal patterns of vulnerability to both short-term extreme events and gradual environmental changes are quite uncertain across the species' limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition.We investigate here to what extent the impact of short- and long-term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species' vulnerability to climate change.First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites.Second, estimated species-specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies.Third, adaptation to site conditions prevails over species-specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models.Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine-scale limitations of the climate data generated by global climate models
    corecore